Implementing Semiparametric Density Estimation

نویسنده

  • Julian FARAWAY
چکیده

A semiparametric estimate of a density may be formed via the convex combination of a parametric and a nonparametric density estimate. It is shown that the some trimming is often necessary to obtain an appropriate proportion of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Semiparametric GARCH Models

This paper aims to investigate a Bayesian sampling approach to parameter estimation in the semiparametric GARCH model with an unknown conditional error density, which we approximate by a mixture of Gaussian densities centered at individual errors and scaled by a common standard deviation. This mixture density has the form of a kernel density estimator of the errors with its bandwidth being the ...

متن کامل

Merging Information for Semiparametric Density Estimation

KONSTANTINOS FOKIANOS Abstra t. The density ratio model specifies that the likelihood ratio of m 1 probability density functions with respect to the m’th is of known parametric form without reference to any parametric model. We study the semiparametric inference problem related to the density ratio model by appealing to the methodology of empirical likelihood. The combined data from all the sam...

متن کامل

Semiparametric Pseudo-Likelihood Estimation in Markov Random Fields

Probabilistic graphical models for continuous variables can be built out of either parametric or nonparametric conditional density estimators. While several research efforts have been focusing on parametric approaches (such as Gaussian models), kernel-based estimators are still the only viable and wellunderstood option for nonparametric density estimation. This paper develops a semiparametric e...

متن کامل

Semiparametric Localized Bandwidth Selection For Kernel Density Estimation

Since conventional cross–validation bandwidth selection methods don’t work for the case where the data considered are dependent time series, alternative bandwidth selection methods are needed. In recent years, Bayesian based global bandwidth selection methods have been proposed. Our experience shows that the use of a global bandwidth is however less suitable than using a localized bandwidth in ...

متن کامل

Semiparametric Localized Bandwidth Selection in Kernel Density Estimation

Since conventional cross–validation bandwidth selection methods do not work for the case where the data considered are serially dependent, alternative bandwidth selection methods are needed. In recent years, Bayesian based global bandwidth selection methods have been proposed. Our experience shows that the use of a global bandwidth is however less suitable than using a localized bandwidth in ke...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001